Length Formulas for the Homology of General- Ized Koszul Complexes

نویسنده

  • BOGDAN ICHIM
چکیده

Let M be a finite module over a noetherian ring R with a free resolution of length 1. We consider the generalized Koszul complexes Cλ̄(t) associated with a map λ̄ : M → H into a finite free R-module H (see [IV], section 3), and investigate the homology of Cλ̄(t) in the special setup when grade IM = rankM = dimR. (IM is the first non-vanishing Fitting ideal of M .) In this case the (interesting) homology of Cλ̄(t) has finite length, and we deduce some length formulas. As an application we give a short algebraic proof of an old theorem due to Greuel (see [G], Proposition 2.5). We refer to [HM] where one can find another proof by similar methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Koszul Bicomplexes and Generalized Koszul Com- Plexes in Projective Dimension One

We describe Koszul type complexes associated with a linear map from any module to a free module, and vice versa with a linear map from a free module to an arbitrary module, generalizing the classical Koszul complexes. Given a short complex of finite free modules, we assemble these complexes to what we call Koszul bicomplexes. They are used in order to investigate the homology of the Koszul comp...

متن کامل

Computing the Homology of Koszul Complexes

Let R be a commutative ring and I an ideal in R which is locally generated by a regular sequence of length d. Then, each f. g. projective R/I-module V has an Rprojective resolution P. of length d. In this paper, we compute the homology of the n-th Koszul complex associated with the homomorphism P1 → P0 for all n ≥ 1, if d = 1. This computation yields a new proof of the classical Adams-Riemann-R...

متن کامل

Generalized Koszul Complexes

This article should be viewed as a survey of generalized Koszul complexes and Koszul bicomplexes with an application to generalized Koszul complexes in projective dimension one. We shall try to give detailed information on the basic definitions and a summary of the main results. Concerning proofs the reader is invited to have a look into [I] or [IV]. Introduction. We start with the following qu...

متن کامل

m at h . A C ] 1 4 O ct 1 99 9 Computing the Homology of Koszul Complexes by Bernhard Köck

Let R be a commutative ring and I an ideal in R which is locally generated by a regular sequence of length d. Then, each f. g. projective R/I-module V has an Rprojective resolution P. of length d. In this paper, we compute the homology of the n-th Koszul complex associated with the homomorphism P1 → P0 for all n ≥ 1, if d = 1. This computation yields a new proof of the classical Adams-Riemann-R...

متن کامل

Koszul and Gorenstein properties for homogeneous algebras

Koszul property was generalized to homogeneous algebras of degree N > 2 in [5], and related to N -complexes in [7]. We show that if the N -homogeneous algebra A is generalized Koszul, AS-Gorenstein and of finite global dimension, then one can apply the Van den Bergh duality theorem [23] to A, i.e., there is a Poincaré duality between Hochschild homology and cohomology of A, as for N = 2. Mathem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005